Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1+1.46x)(1.078x-0.344) = 2.46x .
    Question type: Equation
    Solution:Original question:
     (1 +
73
50
x )(
539
500
x
43
125
) =
123
50
x
    Remove the bracket on the left of the equation:
     Left side of the equation = 1(
539
500
x
43
125
) +
73
50
x (
539
500
x
43
125
)
                                             = 1 ×
539
500
x 1 ×
43
125
+
73
50
x (
539
500
x
43
125
)
                                             =
539
500
x
43
125
+
73
50
x (
539
500
x
43
125
)
                                             =
539
500
x
43
125
+
73
50
x ×
539
500
x
73
50
x ×
43
125
                                             =
539
500
x
43
125
+
39347
25000
x x
3139
6250
x
                                             =
7197
12500
x
43
125
+
39347
25000
x x
    The equation is transformed into :
     
7197
12500
x
43
125
+
39347
25000
x x =
123
50
x

    The solution of the equation:
        x1≈-0.160933 , keep 6 decimal places
        x2≈1.358128 , keep 6 decimal places
    
    There are 2 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。