Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (x*(0.95*70+0.05*5)+(1-x)*0.8)*0.36+0.64 = 0.64+0.36*1.12/0.5 .
    Question type: Equation
    Solution:Original question:
     ( x (
19
20
× 70 +
1
20
× 5) + (1 x ) ×
4
5
) ×
9
25
+
16
25
=
16
25
+
9
25
×
28
25
÷
1
2
    Remove the bracket on the left of the equation:
     Left side of the equation = x (
19
20
× 70 +
1
20
× 5) ×
9
25
+ (1 x ) ×
4
5
×
9
25
+
16
25
                                             = x (
19
20
× 70 +
1
20
× 5) ×
9
25
+ (1 x ) ×
36
125
+
16
25
                                             = x ×
19
20
× 70 ×
9
25
+ x ×
1
20
× 5 ×
9
25
+ (1 x ) ×
36
125
+
16
25
                                             = x ×
1197
50
+ x ×
9
100
+ (1 x ) ×
36
125
+
16
25
                                             =
2403
100
x + (1 x ) ×
36
125
+
16
25
                                             =
2403
100
x + 1 ×
36
125
x ×
36
125
+
16
25
                                             =
2403
100
x +
36
125
x ×
36
125
+
16
25
                                             =
11871
500
x +
116
125
    The equation is transformed into :
     
11871
500
x +
116
125
=
16
25
+
9
25
×
28
25
÷
1
2
     Right side of the equation =
16
25
+
504
625
                                               =
904
625
    The equation is transformed into :
     
11871
500
x +
116
125
=
904
625

    Transposition :
     
11871
500
x =
904
625
116
125

    Combine the items on the right of the equation:
     
11871
500
x =
324
625

    The coefficient of the unknown number is reduced to 1 :
      x =
324
625
÷
11871
500
        =
324
625
×
500
11871
        =
36
5
×
4
1319

    We obtained :
      x =
144
6595
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.021835



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。