Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation x*(0.95*70+0.05*5)+(1-x)*0.8 = 5 .
    Question type: Equation
    Solution:Original question:
      x (
19
20
× 70 +
1
20
× 5) + (1 x ) ×
4
5
= 5
    Remove the bracket on the left of the equation:
     Left side of the equation = x ×
19
20
× 70 + x ×
1
20
× 5 + (1 x ) ×
4
5
                                             = x ×
133
2
+ x ×
1
4
+ (1 x ) ×
4
5
                                             =
267
4
x + (1 x ) ×
4
5
                                             =
267
4
x + 1 ×
4
5
x ×
4
5
                                             =
267
4
x +
4
5
x ×
4
5
                                             =
1319
20
x +
4
5
    The equation is transformed into :
     
1319
20
x +
4
5
= 5

    Transposition :
     
1319
20
x = 5
4
5

    Combine the items on the right of the equation:
     
1319
20
x =
21
5

    The coefficient of the unknown number is reduced to 1 :
      x =
21
5
÷
1319
20
        =
21
5
×
20
1319
        = 21 ×
4
1319

    We obtained :
      x =
84
1319
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.063685



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。