Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 4*(1+(1.2*x)/2.4)*(1+(1.2*x)/2.4) = x .
    Question type: Equation
    Solution:Original question:
     4(1 + (
6
5
x ) ÷
12
5
)(1 + (
6
5
x ) ÷
12
5
) = x
    Remove the bracket on the left of the equation:
     Left side of the equation = 4 × 1(1 + (
6
5
x ) ÷
12
5
) + 4(
6
5
x ) ÷
12
5
× (1 + (
6
5
x ) ÷
12
5
)
                                             = 4(1 + (
6
5
x ) ÷
12
5
) +
5
3
(
6
5
x )(1 + (
6
5
x ) ÷
12
5
)
                                             = 4 × 1 + 4(
6
5
x ) ÷
12
5
+
5
3
(
6
5
x )(1 + (
6
5
x ) ÷
12
5
)
                                             = 4 +
5
3
(
6
5
x ) +
5
3
(
6
5
x )(1 + (
6
5
x ) ÷
12
5
)
                                             = 4 +
5
3
×
6
5
x +
5
3
(
6
5
x )(1 + (
6
5
x ) ÷
12
5
)
                                             = 4 + 2 x +
5
3
(
6
5
x )(1 + (
6
5
x ) ÷
12
5
)
                                             = 4 + 2 x +
5
3
×
6
5
x (1 + (
6
5
x ) ÷
12
5
)
                                             = 4 + 2 x + 2 x (1 + (
6
5
x ) ÷
12
5
)
                                             = 4 + 2 x + 2 x × 1 + 2 x (
6
5
x ) ÷
12
5
                                             = 4 + 2 x + 2 x +
5
6
x (
6
5
x )
                                             = 4 + 4 x +
5
6
x (
6
5
x )
                                             = 4 + 4 x +
5
6
x ×
6
5
x
                                             = 4 + 4 x + 1 x x
    The equation is transformed into :
     4 + 4 x + 1 x x = x
    This equation has no real solution!


Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。