Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (0.09048/17.4-x)+(1.78782/7.18-x)+(0.4415/5-x)+(0.18879/2.17-x)+(0.061/2-x)+(0.54/1-x) = 0 .
    Question type: Equation
    Solution:Original question:
     (
1131
12500
÷
87
5
x ) + (
89391
50000
÷
359
50
x ) + (
883
2000
÷ 5 x ) + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation =
1131
12500
÷
87
5
x + (
89391
50000
÷
359
50
x ) + (
883
2000
÷ 5 x ) + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
13
2500
x + (
89391
50000
÷
359
50
x ) + (
883
2000
÷ 5 x ) + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
13
2500
x +
89391
50000
÷
359
50
x + (
883
2000
÷ 5 x ) + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
13
2500
x +
89391
359000
x + (
883
2000
÷ 5 x ) + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
1271
5000
2 x + (
883
2000
÷ 5 x ) + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
1271
5000
2 x +
883
2000
÷ 5 x + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
1271
5000
2 x +
883
10000
x + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
137
400
3 x + (
18879
100000
÷
217
100
x ) + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
137
400
3 x +
18879
100000
÷
217
100
x + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
137
400
3 x +
87
1000
x + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
859
2000
4 x + (
61
1000
÷ 2 x ) + (
27
50
÷ 1 x )
                                             =
859
2000
4 x +
61
1000
÷ 2 x + (
27
50
÷ 1 x )
                                             =
859
2000
4 x +
61
2000
x + (
27
50
÷ 1 x )
                                             =
23
50
5 x + (
27
50
÷ 1 x )
                                             =
23
50
5 x +
27
50
÷ 1 x
                                             =
23
50
5 x +
27
50
x
                                             = 16 x
    The equation is transformed into :
     16 x = 0

    Transposition :
      - 6 x = 01

    Combine the items on the right of the equation:
      - 6 x = - 1

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
     1 = 6 x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     6 x = 1

    The coefficient of the unknown number is reduced to 1 :
      x = 1 ÷ 6
        = 1 ×
1
6

    We obtained :
      x =
1
6
    This is the solution of the equation.

    Convert the result to decimal form :
      x = 0.166667



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。