Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation -9*(16+4x+4+x-4)+4*(-6-x)*(-13) = 0 .
    Question type: Equation
    Solution:Original question:
      - 9(16 + 4 x + 4 + x 4) + 4( - 6 x )( - 13) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = - 9 × 169 × 4 x 9 × 49 x + 9 × 4 + 4
                                             = - 14436 x 369 x + 36 + 4( - 6 x )( - 13)
                                             = - 14445 x + 4( - 6 x )( - 13)
                                             = - 14445 x 4 × 6( - 13)4 x ( - 13)
                                             = - 14445 x 24( - 13)4 x ( - 13)
                                             = - 14445 x + 24 × 134 x ( - 13)
                                             = - 14445 x + 3124 x ( - 13)
                                             = 16845 x 4 x ( - 13)
                                             = 16845 x + 4 x × 13
                                             = 16845 x + 52 x
                                             = 168 + 7 x
    The equation is transformed into :
     168 + 7 x = 0

    Transposition :
     7 x = 0168

    Combine the items on the right of the equation:
     7 x = - 168

    The coefficient of the unknown number is reduced to 1 :
      x = - 168 ÷ 7
        = - 168 ×
1
7
        = - 24 × 1

    We obtained :
      x = - 24
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。