Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1 = (1-4.5X)(1+X)(1+X)(1+X)(1+X)(1+X)(1+X) .
    Question type: Equation
    Solution:Original question:
     1 = (1
9
2
X )(1 + X )(1 + X )(1 + X )(1 + X )(1 + X )(1 + X )
    Remove the bracket on the right of the equation:
     Right side of the equation = 1(1 + X )(1 + X )(1 + X )(1 + X )(1 + X )(1 + X )
9
2
X (1 + X )(1 + X )(1 + X )
                                               = 1 × 1(1 + X )(1 + X )(1 + X )(1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X )
                                               = 1(1 + X )(1 + X )(1 + X )(1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X )(1 + X )
                                               = 1 × 1(1 + X )(1 + X )(1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X )(1 + X )
                                               = 1(1 + X )(1 + X )(1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X )(1 + X ) + 1
                                               = 1 × 1(1 + X )(1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X ) + 1 X
                                               = 1(1 + X )(1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X ) + 1 X (1 + X )
                                               = 1 × 1(1 + X )(1 + X ) + 1 X (1 + X )(1 + X ) + 1 X (1 + X )(1 + X )
                                               = 1(1 + X )(1 + X ) + 1 X (1 + X )(1 + X ) + 1 X (1 + X )(1 + X )(1 + X )
                                               = 1 × 1(1 + X ) + 1 X (1 + X ) + 1 X (1 + X )(1 + X ) + 1 X
                                               = 1(1 + X ) + 1 X (1 + X ) + 1 X (1 + X )(1 + X ) + 1 X (1 + X )
                                               = 1 × 1 + 1 X + 1 X (1 + X ) + 1 X (1 + X )(1 + X ) + 1
                                               = 1 + 1 X + 1 X (1 + X ) + 1 X (1 + X )(1 + X ) + 1 X
                                               = 1 + 1 X + 1 X × 1 + 1 X X + 1 X (1 + X )
                                               = 1 + 1 X + 1 X + 1 X X + 1 X (1 + X )(1 + X )
                                               = 1 + 2 X + 1 X X + 1 X (1 + X )(1 + X ) + 1 X
                                               = 1 + 2 X + 1 X X + 1 X × 1(1 + X ) + 1 X
                                               = 1 + 2 X + 1 X X + 1 X (1 + X ) + 1 X X
                                               = 1 + 2 X + 1 X X + 1 X × 1 + 1 X X
                                               = 1 + 2 X + 1 X X + 1 X + 1 X X + 1
                                               = 1 + 3 X + 1 X X + 1 X X + 1 X X
                                               = 1 + 3 X + 1 X X + 1 X X + 1 X X
                                               = 1 + 3 X + 1 X X + 1 X X + 1 X X
                                               = 1 + 3 X + 1 X X + 1 X X + 1 X X
                                               = 1 + 3 X + 1 X X + 1 X X + 1 X X

    After the equation is converted into a general formula, there is a common factor:
    ( X - 0 )
    From
        X - 0 = 0

    it is concluded that::
        X1=0

    Solutions that cannot be obtained by factorization:
        X2≈-1.698077 , keep 6 decimal places
        X3≈0.088950 , keep 6 decimal places
    
    There are 3 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。