Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (1400-x)(0.7+0.00032(1400+x)) = 2(x-100)(0.14+0.00006(x+100)) .
    Question type: Equation
    Solution:Original question:
     (1400 x )(
7
10
+
1
3125
(1400 + x )) = 2( x 100)(
7
50
+
3
50000
( x + 100))
    Remove the bracket on the left of the equation:
     Left side of the equation = 1400(
7
10
+
1
3125
(1400 + x )) x (
7
10
+
1
3125
(1400 + x ))
                                             = 1400 ×
7
10
+ 1400 ×
1
3125
(1400 + x ) x (
7
10
+
1
3125
(1400 + x ))
                                             = 980 +
56
125
(1400 + x ) x (
7
10
+
1
3125
(1400 + x ))
                                             = 980 +
56
125
× 1400 +
56
125
x x (
7
10
+
1
3125
(1400 + x ))
                                             = 980 +
3136
5
+
56
125
x x (
7
10
+
1
3125
(1400 + x ))
                                             =
8036
5
+
56
125
x x (
7
10
+
1
3125
(1400 + x ))
                                             =
8036
5
+
56
125
x x ×
7
10
x ×
1
3125
(1400 + x )
                                             =
8036
5
63
250
x x ×
1
3125
(1400 + x )
                                             =
8036
5
63
250
x x ×
1
3125
× 1400 x ×
1
3125
x
                                             =
8036
5
63
250
x x ×
56
125
x ×
1
3125
x
                                             =
8036
5
7
10
x x ×
1
3125
x
    The equation is transformed into :
     
8036
5
7
10
x x ×
1
3125
x = 2( x 100)(
7
50
+
3
50000
( x + 100))
    Remove the bracket on the right of the equation:
     Right side of the equation = 2 x (
7
50
+
3
50000
( x + 100))2 × 100(
7
50
+
3
50000
( x + 100))
                                               = 2 x (
7
50
+
3
50000
( x + 100))200(
7
50
+
3
50000
( x + 100))
                                               = 2 x ×
7
50
+ 2 x ×
3
50000
( x + 100)200(
7
50
+
3
50000
( x + 100))
                                               =
7
25
x +
3
25000
x ( x + 100)200(
7
50
+
3
50000
( x + 100))
                                               =
7
25
x +
3
25000
x x +
3
25000
x × 100200(
7
50
+
3
50000
( x + 100))
                                               =
7
25
x +
3
25000
x x +
3
250
x 200(
7
50
+
3
50000
( x + 100))
                                               =
73
250
x +
3
25000
x x 200(
7
50
+
3
50000
( x + 100))
                                               =
73
250
x +
3
25000
x x 200 ×
7
50
200 ×
3
50000
( x + 100)
                                               =
73
250
x +
3
25000
x x 28
3
250
( x + 100)
                                               =
73
250
x +
3
25000
x x 28
3
250
x
3
250
× 100
                                               =
73
250
x +
3
25000
x x 28
3
250
x
6
5
                                               =
7
25
x +
3
25000
x x
146
5
    The equation is transformed into :
     
8036
5
7
10
x x ×
1
3125
x =
7
25
x +
3
25000
x x
146
5
    The equation can be reduced to :
     
8036
5
7
10
x x ×
1
3125
x =
7
25
x +
3
25000
x x
146
5

    
        x≈1113.307026 , keep 6 decimal places
    
    There are 1 solution(s).


解一元一次方程的详细方法请参阅:《一元一次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。