Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1/d+1/(d+5) = 1/(d+5/2) .
    Question type: Equation
    Solution:Original question:
     1 ÷ d + 1 ÷ ( d + 5) = 1 ÷ ( d + 5 ÷ 2)
     Multiply both sides of the equation by: d  ,  ( d + 5 ÷ 2)
     1( d + 5 ÷ 2) + 1 ÷ ( d + 5) × d ( d + 5 ÷ 2) = 1 d
    Remove a bracket on the left of the equation::
     1 d + 1 × 5 ÷ 2 + 1 ÷ ( d + 5) × d ( d + 5 ÷ 2) = 1 d
    The equation is reduced to :
     1 d +
5
2
+ 1 ÷ ( d + 5) × d ( d + 5 ÷ 2) = 1 d
     Multiply both sides of the equation by:( d + 5)
     1 d ( d + 5) +
5
2
( d + 5) + 1 d ( d + 5 ÷ 2) = 1 d ( d + 5)
    Remove a bracket on the left of the equation:
     1 d d + 1 d × 5 +
5
2
( d + 5) + 1 d ( d + 5 ÷ 2) = 1 d ( d + 5)
    Remove a bracket on the right of the equation::
     1 d d + 1 d × 5 +
5
2
( d + 5) + 1 d ( d + 5 ÷ 2) = 1 d d + 1 d × 5
    The equation is reduced to :
     1 d d + 5 d +
5
2
( d + 5) + 1 d ( d + 5 ÷ 2) = 1 d d + 5 d
    Remove a bracket on the left of the equation:
     1 d d + 5 d +
5
2
d +
5
2
× 5 + 1 d ( d + 5 ÷ 2) = 1 d d + 5 d
    The equation is reduced to :
     1 d d + 5 d +
5
2
d +
25
2
+ 1 d ( d + 5 ÷ 2) = 1 d d + 5 d
    The equation is reduced to :
     1 d d +
15
2
d +
25
2
+ 1 d ( d + 5 ÷ 2) = 1 d d + 5 d
    Remove a bracket on the left of the equation:
     1 d d +
15
2
d +
25
2
+ 1 d d + 1 d × 5 = 1 d d + 5 d
    The equation is reduced to :
     1 d d +
15
2
d +
25
2
+ 1 d d +
5
2
d = 1 d d + 5 d
    The equation is reduced to :
     1 d d + 10 d +
25
2
+ 1 d d = 1 d d + 5 d
    
    There are 0 solution(s).


解程的详细方法请参阅:《方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。