Mathematics
         
语言:中文    Language:English
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation 1.13×2700+(15+h-65)(90+h) = 0 .
    Question type: Equation
    Solution:Original question:
     
113
100
× 2700 + (15 + h 65)(90 + h ) = 0
     Left side of the equation = 3051 + (15 + h 65)(90 + h )
    The equation is transformed into :
     3051 + (15 + h 65)(90 + h ) = 0
    Remove the bracket on the left of the equation:
     Left side of the equation = 3051 + 15(90 + h ) + h (90 + h )65(90 + h )
                                             = 3051 + 15 × 90 + 15 h + h (90 + h )65(90 + h )
                                             = 3051 + 1350 + 15 h + h (90 + h )65(90 + h )
                                             = 4401 + 15 h + h (90 + h )65(90 + h )
                                             = 4401 + 15 h + h × 90 + h h 65(90 + h )
                                             = 4401 + 105 h + h h 65(90 + h )
                                             = 4401 + 105 h + h h 65 × 9065 h
                                             = 4401 + 105 h + h h 585065 h
                                             = - 1449 + 40 h + h h
    The equation is transformed into :
      - 1449 + 40 h + h h = 0

    After the equation is converted into a general formula, it is converted into:
    ( h + 63 )( h - 23 )=0
    From
        h + 63 = 0
        h - 23 = 0

    it is concluded that::
        h1=-63
        h2=23
    
    There are 2 solution(s).


解一元二次方程的详细方法请参阅:《一元二次方程的解法》



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。