Mathematics
         
语言:中文    Language:English
                                Equations   
Fold
                                Unary equation
                                Multivariate equation
                                Math OP  
Unfold
                                Linear algebra      
Unfold
                                Derivative function
                                Function image
                                Hot issues
On line Solution of Monovariate Equation:
    Input any unary equation directly, and then click the "Next" button to obtain the solution of the equation.
    It supports equations that contain mathematical functions.
    Current location:Equations > Monovariate Equation > The history of univariate equation calculation > Answer
    Overview: 1 questions will be solved this time.Among them
           ☆1 equations

[ 1/1 Equation]
    Work: Find the solution of equation (10*2*(x/25)*1.49)+(x/25/4/22)*11531 = 1.6x*5.01 .
    Question type: Equation
    Solution:Original question:
     (10 × 2( x ÷ 25) ×
149
100
) + ( x ÷ 25 ÷ 4 ÷ 22) × 11531 =
8
5
x ×
501
100
    Remove the bracket on the left of the equation:
     Left side of the equation = 10 × 2( x ÷ 25) ×
149
100
+ ( x ÷ 25 ÷ 4 ÷ 22) × 11531
                                             =
149
5
( x ÷ 25) + ( x ÷ 25 ÷ 4 ÷ 22) × 11531
                                             =
149
5
x ÷ 25 + ( x ÷ 25 ÷ 4 ÷ 22) × 11531
                                             =
149
125
x + ( x ÷ 25 ÷ 4 ÷ 22) × 11531
                                             =
149
125
x + x ÷ 25 ÷ 4 ÷ 22 × 11531
                                             =
149
125
x + x ×
11531
2200
                                             =
70767
11000
x
    The equation is transformed into :
     
70767
11000
x =
8
5
x ×
501
100
     Right side of the equation =
1002
125
x
    The equation is transformed into :
     
70767
11000
x =
1002
125
x

    Transposition :
     
70767
11000
x
1002
125
x = 0

    Combine the items on the left of the equation:
      -
17409
11000
x = 0

    By shifting the terms and changing the symbols on toth sides of the equation, we obtain :
      - 0 =
17409
11000
x

    If the left side of the equation is equal to the right side, then the right side must also be equal to the left side, that is :
     
17409
11000
x = - 0

    The coefficient of the unknown number is reduced to 1 :
      x = - 0 ÷
17409
11000
        = - 0 ×
11000
17409

    We obtained :
      x = 0
    This is the solution of the equation.



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。