Mathematics
         
语言:中文    Language:English
Solution inequality:
    Directly input the univariate inequality (that is, the inequality containing only one variable), set the angular unit (radian or angle) of the trigonometric function, and click the "Next" button to obtain the solution set of the inequality.
    It supports mathematical functions (including trigonometric functions).
    Current location:Mathematical operation > History of Inequality Computation > Answer

    Overview: 1 questions will be solved this time.Among them
           ☆1 inequalities

[ 1/1Inequality]
    Assignment:Find the solution set of inequality 1449+837n+(25n^2+240n)*(50n^2+240n)/(480+51n)+35.8*(14.4+n)+325*(11.1+n)-1.2[4496+1211n+(214n+3.6n^2)*(214n+7.3n^2)/(428+7.3n)] >= 0 .
    Question type: Inequality
    Solution:
    The inequality can be reduced to 1 inequality:
        1449 + 837 * n + ( 25 * n ^ 2 + 240 * n ) * ( 50 * n ^ 2 + 240 * n ) / ( 480 + 51 * n ) + 35.8 * ( 14.4 + n ) + 325 * ( 11.1 + n ) - 1.2 * ( 4496 + 1211 * n + ( 214 * n + 3.6 * n ^ 2 ) * ( 214 * n + 7.3 * n ^ 2 ) / ( 428 + 7.3 * n ) ) >= 0         (1)
        From the definition field of divisor
         480 + 51 * x ≠ 0        (2 )
        From the definition field of divisor
         428 + 7.3 * x ≠ 0        (3 )

    From inequality(1):
         -58.630137 ≤ n ≤ -58.543114 或  -9.537197 ≤ n ≤ -9.411765 或  -3.646547 ≤ n ≤ 0.703862 或  n ≥ 3.372293
    From inequality(2):
         n < -9.411765 或  n > -9.411765
    From inequality(3):
         n < -58.630137 或  n > -58.630137

    From inequalities (1) and (2)
         -58.630137 ≤ n ≤ -58.543114 或  -9.537197 ≤ n < -9.411765 或  -3.646547 ≤ n ≤ 0.703862 或  n ≥ 3.372293    (4)
    From inequalities (3) and (4)
         -58.630137 < n ≤ -58.543114 或  -9.537197 ≤ n < -9.411765 或  -3.646547 ≤ n ≤ 0.703862 或  n ≥ 3.372293    (5)

    The final solution set is :

         -58.630137 < n ≤ -58.543114 或  -9.537197 ≤ n < -9.411765 或  -3.646547 ≤ n ≤ 0.703862 或  n ≥ 3.372293



Your problem has not been solved here? Please go to the Hot Problems section!





  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。