Mathematics
         
语言:中文    Language:English
Derivative function:
    Enter an original function (that is, the function to be derived), then set the variable to be derived and the order of the derivative, and click the "Next" button to obtain the derivative function of the corresponding order of the function.
    Note that the input function supports mathematical functions and other constants.
    Current location:Derivative function > History of Derivative Function Calculation
    Finding the 1th Order Derivative of Function 2x-1 on x
    Finding the 1th Order Derivative of Function 2^(1-x)+2^(1-1/(2x)) on x
    Finding the 1th Order Derivative of Function 2x-xlnx; on x
    Finding the 1th Order Derivative of Function 2x-xinx; on x
    Finding the 1th Order Derivative of Function log(x,x+1) on x
    Finding the 1th Order Derivative of Function -1÷e^x on x
    Finding the 1th Order Derivative of Function -1/e^x on x
    Finding the 1th Order Derivative of Function -1/e*x on x
    Finding the 1th Order Derivative of Function (1/8)*(1-(cosx)^2)^4 on x
    Finding the 1th Order Derivative of Function (1+x)^2 on x
    Finding the 1th Order Derivative of Function secx on x
    Finding the 1th Order Derivative of Function x-xlnx; on x
    Finding the 1th Order Derivative of Function x^(1/x) on x
    Finding the 1th Order Derivative of Function log23 on x
    Finding the 1th Order Derivative of Function (1+x)^(1/x); on x
    Finding the 1th Order Derivative of Function 1/4*ln((1+sin(2x))/(1-sin(2x))) on x
    Finding the 1th Order Derivative of Function 1/2*ln(sec(2x)+tan(2x)) on x
    Finding the 1th Order Derivative of Function ln(1+sinx) on x
    Finding the 1th Order Derivative of Function ln(-(x/a)-(x^2-a^2)^(1/2)/a) on x
    Finding the 1th Order Derivative of Function ln(-x-(x^2-a^2)^(1/2)) on x

Home page << page77 page78 page79 page80 page81 ... ... page92 page93 page94 page95 page96 >> Last page 1969 pages in total



  New addition:Lenders ToolBox module(Specific location:Math OP > Lenders ToolBox ),welcome。