本次共计算 1 个题目:每一题对 n 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数2.4{n}^{4} + 12.16{n}^{3} - 640.672{n}^{2} + 7160.3328n - 42813.2608 + \frac{159410.944}{n} - \frac{372462.72}{({n}^{2})} 关于 n 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2.4n^{4} + 12.16n^{3} - 640.672n^{2} + 7160.3328n + \frac{159410.944}{n} - \frac{372462.72}{n^{2}} - 42813.2608\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2.4n^{4} + 12.16n^{3} - 640.672n^{2} + 7160.3328n + \frac{159410.944}{n} - \frac{372462.72}{n^{2}} - 42813.2608\right)}{dn}\\=&2.4*4n^{3} + 12.16*3n^{2} - 640.672*2n + 7160.3328 + \frac{159410.944*-1}{n^{2}} - \frac{372462.72*-2}{n^{3}} + 0\\=&9.6n^{3} + 36.48n^{2} - 1281.344n - \frac{159410.944}{n^{2}} + \frac{744925.44}{n^{3}} + 7160.3328\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!