There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2.4{n}^{4} + 12.16{n}^{3} - 640.672{n}^{2} + 7160.3328n - 42813.2608 + \frac{159410.944}{n} - \frac{372462.72}{({n}^{2})}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2.4n^{4} + 12.16n^{3} - 640.672n^{2} + 7160.3328n + \frac{159410.944}{n} - \frac{372462.72}{n^{2}} - 42813.2608\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2.4n^{4} + 12.16n^{3} - 640.672n^{2} + 7160.3328n + \frac{159410.944}{n} - \frac{372462.72}{n^{2}} - 42813.2608\right)}{dn}\\=&2.4*4n^{3} + 12.16*3n^{2} - 640.672*2n + 7160.3328 + \frac{159410.944*-1}{n^{2}} - \frac{372462.72*-2}{n^{3}} + 0\\=&9.6n^{3} + 36.48n^{2} - 1281.344n - \frac{159410.944}{n^{2}} + \frac{744925.44}{n^{3}} + 7160.3328\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!