本次共计算 2 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数\frac{a{e}^{(\frac{bwx}{a})}(asin(wx) + bcos(wx))}{(w({a}^{2} + {b}^{2}))} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{a^{2}{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{a^{2}{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\right)}{dx}\\=&(\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})a^{2}{e}^{(\frac{wbx}{a})}sin(wx) + \frac{a^{2}({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))sin(wx)}{(a^{2}w + wb^{2})} + \frac{a^{2}{e}^{(\frac{wbx}{a})}cos(wx)w}{(a^{2}w + wb^{2})} + (\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})ab{e}^{(\frac{wbx}{a})}cos(wx) + \frac{ab({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))cos(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}*-sin(wx)w}{(a^{2}w + wb^{2})} + 0\\=&\frac{a^{2}w{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + \frac{wb^{2}{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数\frac{a{e}^{(\frac{bwx}{a})}(bsin(wx) - acos(wx))}{(w({a}^{2} + {b}^{2}))} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ab{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} - \frac{a^{2}{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ab{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} - \frac{a^{2}{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\right)}{dx}\\=&(\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})ab{e}^{(\frac{wbx}{a})}sin(wx) + \frac{ab({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))sin(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}cos(wx)w}{(a^{2}w + wb^{2})} - (\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})a^{2}{e}^{(\frac{wbx}{a})}cos(wx) - \frac{a^{2}({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))cos(wx)}{(a^{2}w + wb^{2})} - \frac{a^{2}{e}^{(\frac{wbx}{a})}*-sin(wx)w}{(a^{2}w + wb^{2})} + 0\\=&\frac{wb^{2}{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} + \frac{a^{2}w{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!