There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{a{e}^{(\frac{bwx}{a})}(asin(wx) + bcos(wx))}{(w({a}^{2} + {b}^{2}))} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{a^{2}{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{a^{2}{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\right)}{dx}\\=&(\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})a^{2}{e}^{(\frac{wbx}{a})}sin(wx) + \frac{a^{2}({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))sin(wx)}{(a^{2}w + wb^{2})} + \frac{a^{2}{e}^{(\frac{wbx}{a})}cos(wx)w}{(a^{2}w + wb^{2})} + (\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})ab{e}^{(\frac{wbx}{a})}cos(wx) + \frac{ab({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))cos(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}*-sin(wx)w}{(a^{2}w + wb^{2})} + 0\\=&\frac{a^{2}w{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + \frac{wb^{2}{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ \frac{a{e}^{(\frac{bwx}{a})}(bsin(wx) - acos(wx))}{(w({a}^{2} + {b}^{2}))} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ab{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} - \frac{a^{2}{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ab{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} - \frac{a^{2}{e}^{(\frac{wbx}{a})}cos(wx)}{(a^{2}w + wb^{2})} + C\right)}{dx}\\=&(\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})ab{e}^{(\frac{wbx}{a})}sin(wx) + \frac{ab({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))sin(wx)}{(a^{2}w + wb^{2})} + \frac{ab{e}^{(\frac{wbx}{a})}cos(wx)w}{(a^{2}w + wb^{2})} - (\frac{-(0 + 0)}{(a^{2}w + wb^{2})^{2}})a^{2}{e}^{(\frac{wbx}{a})}cos(wx) - \frac{a^{2}({e}^{(\frac{wbx}{a})}((\frac{wb}{a})ln(e) + \frac{(\frac{wbx}{a})(0)}{(e)}))cos(wx)}{(a^{2}w + wb^{2})} - \frac{a^{2}{e}^{(\frac{wbx}{a})}*-sin(wx)w}{(a^{2}w + wb^{2})} + 0\\=&\frac{wb^{2}{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})} + \frac{a^{2}w{e}^{(\frac{wbx}{a})}sin(wx)}{(a^{2}w + wb^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!