本次共计算 2 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数\frac{3{e}^{(\frac{4x}{3})}(3sin(x) + 4cos(x))}{25} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{9}{25}{e}^{(\frac{4}{3}x)}sin(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{9}{25}{e}^{(\frac{4}{3}x)}sin(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\right)}{dx}\\=&\frac{9}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))sin(x) + \frac{9}{25}{e}^{(\frac{4}{3}x)}cos(x) + \frac{12}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))cos(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}*-sin(x) + 0\\=&{e}^{(\frac{4}{3}x)}cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数\frac{3{e}^{(\frac{4x}{3})}(4sin(x) - 3cos(x))}{25} + C 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{12}{25}{e}^{(\frac{4}{3}x)}sin(x) - \frac{9}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{12}{25}{e}^{(\frac{4}{3}x)}sin(x) - \frac{9}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\right)}{dx}\\=&\frac{12}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))sin(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}cos(x) - \frac{9}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))cos(x) - \frac{9}{25}{e}^{(\frac{4}{3}x)}*-sin(x) + 0\\=&{e}^{(\frac{4}{3}x)}sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!