There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ \frac{3{e}^{(\frac{4x}{3})}(3sin(x) + 4cos(x))}{25} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{9}{25}{e}^{(\frac{4}{3}x)}sin(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{9}{25}{e}^{(\frac{4}{3}x)}sin(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\right)}{dx}\\=&\frac{9}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))sin(x) + \frac{9}{25}{e}^{(\frac{4}{3}x)}cos(x) + \frac{12}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))cos(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}*-sin(x) + 0\\=&{e}^{(\frac{4}{3}x)}cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ \frac{3{e}^{(\frac{4x}{3})}(4sin(x) - 3cos(x))}{25} + C\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{12}{25}{e}^{(\frac{4}{3}x)}sin(x) - \frac{9}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{12}{25}{e}^{(\frac{4}{3}x)}sin(x) - \frac{9}{25}{e}^{(\frac{4}{3}x)}cos(x) + C\right)}{dx}\\=&\frac{12}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))sin(x) + \frac{12}{25}{e}^{(\frac{4}{3}x)}cos(x) - \frac{9}{25}({e}^{(\frac{4}{3}x)}((\frac{4}{3})ln(e) + \frac{(\frac{4}{3}x)(0)}{(e)}))cos(x) - \frac{9}{25}{e}^{(\frac{4}{3}x)}*-sin(x) + 0\\=&{e}^{(\frac{4}{3}x)}sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!