本次共计算 6 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/6】求函数-cos(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/6】求函数sin(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【3/6】求函数-ln(cos(x)) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -ln(cos(x))\right)}{dx}\\=&\frac{--sin(x)}{(cos(x))}\\=&\frac{sin(x)}{cos(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【4/6】求函数ln(sin(x)) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sin(x))\right)}{dx}\\=&\frac{cos(x)}{(sin(x))}\\=&\frac{cos(x)}{sin(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【5/6】求函数ln(tan(x) + \frac{1}{cos(x)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(tan(x) + \frac{1}{cos(x)})\right)}{dx}\\=&\frac{(sec^{2}(x)(1) + \frac{sin(x)}{cos^{2}(x)})}{(tan(x) + \frac{1}{cos(x)})}\\=&\frac{sec^{2}(x)}{(tan(x) + \frac{1}{cos(x)})} + \frac{sin(x)}{(tan(x) + \frac{1}{cos(x)})cos^{2}(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【6/6】求函数ln(\frac{1}{sin(x)} - \frac{1}{tan(x)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{1}{sin(x)} - \frac{1}{tan(x)})\right)}{dx}\\=&\frac{(\frac{-cos(x)}{sin^{2}(x)} - \frac{-sec^{2}(x)(1)}{tan^{2}(x)})}{(\frac{1}{sin(x)} - \frac{1}{tan(x)})}\\=&\frac{-cos(x)}{(\frac{1}{sin(x)} - \frac{1}{tan(x)})sin^{2}(x)} + \frac{sec^{2}(x)}{(\frac{1}{sin(x)} - \frac{1}{tan(x)})tan^{2}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!