There are 6 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/6]Find\ the\ first\ derivative\ of\ function\ -cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -cos(x)\right)}{dx}\\=&--sin(x)\\=&sin(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/6]Find\ the\ first\ derivative\ of\ function\ sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(x)\right)}{dx}\\=&cos(x)\\=&cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[3/6]Find\ the\ first\ derivative\ of\ function\ -ln(cos(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(cos(x))\right)}{dx}\\=&\frac{--sin(x)}{(cos(x))}\\=&\frac{sin(x)}{cos(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[4/6]Find\ the\ first\ derivative\ of\ function\ ln(sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(sin(x))\right)}{dx}\\=&\frac{cos(x)}{(sin(x))}\\=&\frac{cos(x)}{sin(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[5/6]Find\ the\ first\ derivative\ of\ function\ ln(tan(x) + \frac{1}{cos(x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(tan(x) + \frac{1}{cos(x)})\right)}{dx}\\=&\frac{(sec^{2}(x)(1) + \frac{sin(x)}{cos^{2}(x)})}{(tan(x) + \frac{1}{cos(x)})}\\=&\frac{sec^{2}(x)}{(tan(x) + \frac{1}{cos(x)})} + \frac{sin(x)}{(tan(x) + \frac{1}{cos(x)})cos^{2}(x)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[6/6]Find\ the\ first\ derivative\ of\ function\ ln(\frac{1}{sin(x)} - \frac{1}{tan(x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{1}{sin(x)} - \frac{1}{tan(x)})\right)}{dx}\\=&\frac{(\frac{-cos(x)}{sin^{2}(x)} - \frac{-sec^{2}(x)(1)}{tan^{2}(x)})}{(\frac{1}{sin(x)} - \frac{1}{tan(x)})}\\=&\frac{-cos(x)}{(\frac{1}{sin(x)} - \frac{1}{tan(x)})sin^{2}(x)} + \frac{sec^{2}(x)}{(\frac{1}{sin(x)} - \frac{1}{tan(x)})tan^{2}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!