本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(1 + {(x)}^{2})}^{\frac{1}{2}}{\frac{1}{({(\frac{{x}^{2}}{200})}^{2} + {(\frac{x}{\frac{39}{5}})}^{2})}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(x^{2} + 1)^{\frac{1}{2}}}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(x^{2} + 1)^{\frac{1}{2}}}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}} + (x^{2} + 1)^{\frac{1}{2}}(\frac{\frac{-1}{2}(\frac{1}{40000}*4x^{3} + \frac{25}{1521}*2x)}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{3}{2}}})\\=&\frac{x}{(x^{2} + 1)^{\frac{1}{2}}(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}} - \frac{(x^{2} + 1)^{\frac{1}{2}}x^{3}}{20000(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{3}{2}}} - \frac{25(x^{2} + 1)^{\frac{1}{2}}x}{1521(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!