There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(1 + {(x)}^{2})}^{\frac{1}{2}}{\frac{1}{({(\frac{{x}^{2}}{200})}^{2} + {(\frac{x}{\frac{39}{5}})}^{2})}}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(x^{2} + 1)^{\frac{1}{2}}}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(x^{2} + 1)^{\frac{1}{2}}}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}} + (x^{2} + 1)^{\frac{1}{2}}(\frac{\frac{-1}{2}(\frac{1}{40000}*4x^{3} + \frac{25}{1521}*2x)}{(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{3}{2}}})\\=&\frac{x}{(x^{2} + 1)^{\frac{1}{2}}(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{1}{2}}} - \frac{(x^{2} + 1)^{\frac{1}{2}}x^{3}}{20000(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{3}{2}}} - \frac{25(x^{2} + 1)^{\frac{1}{2}}x}{1521(\frac{1}{40000}x^{4} + \frac{25}{1521}x^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!