本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln({(\frac{x}{(x + 1)})}^{\frac{1}{2}} - 1) - ln({(\frac{x}{(x + 1)})}^{\frac{1}{2}} + 1) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1) - ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1) - ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)\right)}{dx}\\=&\frac{((\frac{\frac{-1}{2}(1 + 0)}{(x + 1)^{\frac{3}{2}}})x^{\frac{1}{2}} + \frac{\frac{1}{2}}{(x + 1)^{\frac{1}{2}}x^{\frac{1}{2}}} + 0)}{(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1)} - \frac{((\frac{\frac{-1}{2}(1 + 0)}{(x + 1)^{\frac{3}{2}}})x^{\frac{1}{2}} + \frac{\frac{1}{2}}{(x + 1)^{\frac{1}{2}}x^{\frac{1}{2}}} + 0)}{(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)}\\=&\frac{-x^{\frac{1}{2}}}{2(x + 1)^{\frac{3}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1)} + \frac{1}{2(x + 1)^{\frac{1}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1)x^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}}{2(x + 1)^{\frac{3}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)} - \frac{1}{2(x + 1)^{\frac{1}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!