There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln({(\frac{x}{(x + 1)})}^{\frac{1}{2}} - 1) - ln({(\frac{x}{(x + 1)})}^{\frac{1}{2}} + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1) - ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1) - ln(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)\right)}{dx}\\=&\frac{((\frac{\frac{-1}{2}(1 + 0)}{(x + 1)^{\frac{3}{2}}})x^{\frac{1}{2}} + \frac{\frac{1}{2}}{(x + 1)^{\frac{1}{2}}x^{\frac{1}{2}}} + 0)}{(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1)} - \frac{((\frac{\frac{-1}{2}(1 + 0)}{(x + 1)^{\frac{3}{2}}})x^{\frac{1}{2}} + \frac{\frac{1}{2}}{(x + 1)^{\frac{1}{2}}x^{\frac{1}{2}}} + 0)}{(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)}\\=&\frac{-x^{\frac{1}{2}}}{2(x + 1)^{\frac{3}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1)} + \frac{1}{2(x + 1)^{\frac{1}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} - 1)x^{\frac{1}{2}}} + \frac{x^{\frac{1}{2}}}{2(x + 1)^{\frac{3}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)} - \frac{1}{2(x + 1)^{\frac{1}{2}}(\frac{x^{\frac{1}{2}}}{(x + 1)^{\frac{1}{2}}} + 1)x^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!