本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(x + {({x}^{2} + {a}^{2})}^{\frac{1}{2}}) - \frac{({({x}^{2} + {a}^{2})}^{\frac{1}{2}})}{x} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x + (x^{2} + a^{2})^{\frac{1}{2}}) - \frac{(x^{2} + a^{2})^{\frac{1}{2}}}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x + (x^{2} + a^{2})^{\frac{1}{2}}) - \frac{(x^{2} + a^{2})^{\frac{1}{2}}}{x}\right)}{dx}\\=&\frac{(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}}))}{(x + (x^{2} + a^{2})^{\frac{1}{2}})} - \frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}})}{x} - \frac{(x^{2} + a^{2})^{\frac{1}{2}}*-1}{x^{2}}\\=&\frac{(x^{2} + a^{2})^{\frac{1}{2}}}{x^{2}} + \frac{x}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{1}{2}}} - \frac{1}{(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!