There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(x + {({x}^{2} + {a}^{2})}^{\frac{1}{2}}) - \frac{({({x}^{2} + {a}^{2})}^{\frac{1}{2}})}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(x + (x^{2} + a^{2})^{\frac{1}{2}}) - \frac{(x^{2} + a^{2})^{\frac{1}{2}}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(x + (x^{2} + a^{2})^{\frac{1}{2}}) - \frac{(x^{2} + a^{2})^{\frac{1}{2}}}{x}\right)}{dx}\\=&\frac{(1 + (\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}}))}{(x + (x^{2} + a^{2})^{\frac{1}{2}})} - \frac{(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + a^{2})^{\frac{1}{2}}})}{x} - \frac{(x^{2} + a^{2})^{\frac{1}{2}}*-1}{x^{2}}\\=&\frac{(x^{2} + a^{2})^{\frac{1}{2}}}{x^{2}} + \frac{x}{(x + (x^{2} + a^{2})^{\frac{1}{2}})(x^{2} + a^{2})^{\frac{1}{2}}} - \frac{1}{(x^{2} + a^{2})^{\frac{1}{2}}} + \frac{1}{(x + (x^{2} + a^{2})^{\frac{1}{2}})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!