本次共计算 1 个题目:每一题对 p 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(p - f)(\frac{1}{2} + \frac{(s(p - q) + a(hm - kn))}{(2(ts - ab))}) + (hm - g)(\frac{1}{2} + \frac{(t(hm - kn) + b(p - q))}{(2(ts - ab))}) 关于 p 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}p + \frac{sp^{2}}{(2st - 2ab)} - \frac{sqp}{(2st - 2ab)} + \frac{ahmp}{(2st - 2ab)} - \frac{aknp}{(2st - 2ab)} - \frac{1}{2}f - \frac{fsp}{(2st - 2ab)} + \frac{fsq}{(2st - 2ab)} - \frac{fahm}{(2st - 2ab)} + \frac{fakn}{(2st - 2ab)} + \frac{1}{2}hm - \frac{hmtg}{(2st - 2ab)} - \frac{hmknt}{(2st - 2ab)} + \frac{hmbp}{(2st - 2ab)} - \frac{qhmb}{(2st - 2ab)} - \frac{1}{2}g + \frac{h^{2}m^{2}t}{(2st - 2ab)} + \frac{kntg}{(2st - 2ab)} - \frac{bgp}{(2st - 2ab)} + \frac{qbg}{(2st - 2ab)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}p + \frac{sp^{2}}{(2st - 2ab)} - \frac{sqp}{(2st - 2ab)} + \frac{ahmp}{(2st - 2ab)} - \frac{aknp}{(2st - 2ab)} - \frac{1}{2}f - \frac{fsp}{(2st - 2ab)} + \frac{fsq}{(2st - 2ab)} - \frac{fahm}{(2st - 2ab)} + \frac{fakn}{(2st - 2ab)} + \frac{1}{2}hm - \frac{hmtg}{(2st - 2ab)} - \frac{hmknt}{(2st - 2ab)} + \frac{hmbp}{(2st - 2ab)} - \frac{qhmb}{(2st - 2ab)} - \frac{1}{2}g + \frac{h^{2}m^{2}t}{(2st - 2ab)} + \frac{kntg}{(2st - 2ab)} - \frac{bgp}{(2st - 2ab)} + \frac{qbg}{(2st - 2ab)}\right)}{dp}\\=&\frac{1}{2} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})sp^{2} + \frac{s*2p}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})sqp - \frac{sq}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})ahmp + \frac{ahm}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})aknp - \frac{akn}{(2st - 2ab)} + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fsp - \frac{fs}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fsq + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fahm + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fakn + 0 + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmtg + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmknt + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmbp + \frac{hmb}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qhmb + 0 + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})h^{2}m^{2}t + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})kntg + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})bgp - \frac{bg}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qbg + 0\\=&\frac{2sp}{(2st - 2ab)} - \frac{sq}{(2st - 2ab)} + \frac{ahm}{(2st - 2ab)} - \frac{akn}{(2st - 2ab)} - \frac{fs}{(2st - 2ab)} + \frac{hmb}{(2st - 2ab)} - \frac{bg}{(2st - 2ab)} + \frac{1}{2}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!