There are 1 questions in this calculation: for each question, the 1 derivative of p is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (p - f)(\frac{1}{2} + \frac{(s(p - q) + a(hm - kn))}{(2(ts - ab))}) + (hm - g)(\frac{1}{2} + \frac{(t(hm - kn) + b(p - q))}{(2(ts - ab))})\ with\ respect\ to\ p:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}p + \frac{sp^{2}}{(2st - 2ab)} - \frac{sqp}{(2st - 2ab)} + \frac{ahmp}{(2st - 2ab)} - \frac{aknp}{(2st - 2ab)} - \frac{1}{2}f - \frac{fsp}{(2st - 2ab)} + \frac{fsq}{(2st - 2ab)} - \frac{fahm}{(2st - 2ab)} + \frac{fakn}{(2st - 2ab)} + \frac{1}{2}hm - \frac{hmtg}{(2st - 2ab)} - \frac{hmknt}{(2st - 2ab)} + \frac{hmbp}{(2st - 2ab)} - \frac{qhmb}{(2st - 2ab)} - \frac{1}{2}g + \frac{h^{2}m^{2}t}{(2st - 2ab)} + \frac{kntg}{(2st - 2ab)} - \frac{bgp}{(2st - 2ab)} + \frac{qbg}{(2st - 2ab)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}p + \frac{sp^{2}}{(2st - 2ab)} - \frac{sqp}{(2st - 2ab)} + \frac{ahmp}{(2st - 2ab)} - \frac{aknp}{(2st - 2ab)} - \frac{1}{2}f - \frac{fsp}{(2st - 2ab)} + \frac{fsq}{(2st - 2ab)} - \frac{fahm}{(2st - 2ab)} + \frac{fakn}{(2st - 2ab)} + \frac{1}{2}hm - \frac{hmtg}{(2st - 2ab)} - \frac{hmknt}{(2st - 2ab)} + \frac{hmbp}{(2st - 2ab)} - \frac{qhmb}{(2st - 2ab)} - \frac{1}{2}g + \frac{h^{2}m^{2}t}{(2st - 2ab)} + \frac{kntg}{(2st - 2ab)} - \frac{bgp}{(2st - 2ab)} + \frac{qbg}{(2st - 2ab)}\right)}{dp}\\=&\frac{1}{2} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})sp^{2} + \frac{s*2p}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})sqp - \frac{sq}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})ahmp + \frac{ahm}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})aknp - \frac{akn}{(2st - 2ab)} + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fsp - \frac{fs}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fsq + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fahm + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})fakn + 0 + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmtg + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmknt + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})hmbp + \frac{hmb}{(2st - 2ab)} - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qhmb + 0 + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})h^{2}m^{2}t + 0 + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})kntg + 0 - (\frac{-(0 + 0)}{(2st - 2ab)^{2}})bgp - \frac{bg}{(2st - 2ab)} + (\frac{-(0 + 0)}{(2st - 2ab)^{2}})qbg + 0\\=&\frac{2sp}{(2st - 2ab)} - \frac{sq}{(2st - 2ab)} + \frac{ahm}{(2st - 2ab)} - \frac{akn}{(2st - 2ab)} - \frac{fs}{(2st - 2ab)} + \frac{hmb}{(2st - 2ab)} - \frac{bg}{(2st - 2ab)} + \frac{1}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!