本次共计算 2 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/2】求函数c{x}^{3}{a}^{x}e^{x}log_{b}^{x}ln(x)sin(x)cos(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x)\right)}{dx}\\=&c*3x^{2}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{3}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{3}{a}^{x}(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{b}^{x}}{(b)})}{(ln(b))})e^{x}ln(x)sin(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + \frac{cx^{3}{a}^{x}log_{b}^{x}e^{x}sin(x)cos(x)}{(x)} + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)cos(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)*-sin(x)\\=&3cx^{2}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(a)ln(x)sin(x)cos(x) + \frac{cx^{2}{a}^{x}e^{x}ln(x)sin(x)cos(x)}{ln(b)} + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{2}{a}^{x}log_{b}^{x}e^{x}sin(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)cos^{2}(x) - cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/2】求函数c{({a}^{e^{log_{b}^{ln(sin(cos(x)))}}})}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = c{a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( c{a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}\right)}{dx}\\=&c({a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}((3e^{log_{b}^{ln(sin(cos(x)))}}(\frac{(\frac{(\frac{cos(cos(x))*-sin(x)}{(sin(cos(x)))})}{(ln(sin(cos(x))))} - \frac{(0)log_{b}^{ln(sin(cos(x)))}}{(b)})}{(ln(b))}))ln(a) + \frac{(3e^{log_{b}^{ln(sin(cos(x)))}})(0)}{(a)}))\\=&\frac{-3c{a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}e^{log_{b}^{ln(sin(cos(x)))}}ln(a)sin(x)cos(cos(x))}{ln(sin(cos(x)))ln(b)sin(cos(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!