There are 2 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ first\ derivative\ of\ function\ c{x}^{3}{a}^{x}e^{x}log_{b}^{x}ln(x)sin(x)cos(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x)\right)}{dx}\\=&c*3x^{2}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{3}({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{3}{a}^{x}(\frac{(\frac{(1)}{(x)} - \frac{(0)log_{b}^{x}}{(b)})}{(ln(b))})e^{x}ln(x)sin(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + \frac{cx^{3}{a}^{x}log_{b}^{x}e^{x}sin(x)cos(x)}{(x)} + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)cos(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)*-sin(x)\\=&3cx^{2}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(a)ln(x)sin(x)cos(x) + \frac{cx^{2}{a}^{x}e^{x}ln(x)sin(x)cos(x)}{ln(b)} + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin(x)cos(x) + cx^{2}{a}^{x}log_{b}^{x}e^{x}sin(x)cos(x) + cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)cos^{2}(x) - cx^{3}{a}^{x}log_{b}^{x}e^{x}ln(x)sin^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ first\ derivative\ of\ function\ c{({a}^{e^{log_{b}^{ln(sin(cos(x)))}}})}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = c{a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( c{a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}\right)}{dx}\\=&c({a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}((3e^{log_{b}^{ln(sin(cos(x)))}}(\frac{(\frac{(\frac{cos(cos(x))*-sin(x)}{(sin(cos(x)))})}{(ln(sin(cos(x))))} - \frac{(0)log_{b}^{ln(sin(cos(x)))}}{(b)})}{(ln(b))}))ln(a) + \frac{(3e^{log_{b}^{ln(sin(cos(x)))}})(0)}{(a)}))\\=&\frac{-3c{a}^{(3e^{log_{b}^{ln(sin(cos(x)))}})}e^{log_{b}^{ln(sin(cos(x)))}}ln(a)sin(x)cos(cos(x))}{ln(sin(cos(x)))ln(b)sin(cos(x))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!