本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(1 - {x}^{2})}^{\frac{1}{2}} - x)}{(x{(1 - {x}^{2})}^{\frac{1}{2}} + 1 - {x}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{(-x^{2} + 1)^{\frac{1}{2}}}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} - \frac{x}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{(-x^{2} + 1)^{\frac{1}{2}}}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} - \frac{x}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} + (-x^{2} + 1)^{\frac{1}{2}}(\frac{-((\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})x + (-x^{2} + 1)^{\frac{1}{2}} - 2x + 0)}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}}) - (\frac{-((\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})x + (-x^{2} + 1)^{\frac{1}{2}} - 2x + 0)}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}})x - \frac{1}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\\=&\frac{-x}{(-x^{2} + 1)^{\frac{1}{2}}((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} - \frac{x^{3}}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{3(-x^{2} + 1)^{\frac{1}{2}}x}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}} - \frac{1}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}} - \frac{1}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!