There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(1 - {x}^{2})}^{\frac{1}{2}} - x)}{(x{(1 - {x}^{2})}^{\frac{1}{2}} + 1 - {x}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(-x^{2} + 1)^{\frac{1}{2}}}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} - \frac{x}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(-x^{2} + 1)^{\frac{1}{2}}}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} - \frac{x}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\right)}{dx}\\=&\frac{(\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} + (-x^{2} + 1)^{\frac{1}{2}}(\frac{-((\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})x + (-x^{2} + 1)^{\frac{1}{2}} - 2x + 0)}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}}) - (\frac{-((\frac{\frac{1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{1}{2}}})x + (-x^{2} + 1)^{\frac{1}{2}} - 2x + 0)}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}})x - \frac{1}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\\=&\frac{-x}{(-x^{2} + 1)^{\frac{1}{2}}((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)} - \frac{x^{3}}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}(-x^{2} + 1)^{\frac{1}{2}}} + \frac{3(-x^{2} + 1)^{\frac{1}{2}}x}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}} - \frac{1}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)^{2}} - \frac{1}{((-x^{2} + 1)^{\frac{1}{2}}x - x^{2} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!