本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({x}^{2} + {d}^{2} + hd)}{sqrt({x}^{2} + {d}^{2})sqrt({x}^{2} + {(h + d)}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{d^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{dh}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{d^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{dh}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})}\right)}{dx}\\=&\frac{2x}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{x^{2}*-(2x + 0)*\frac{1}{2}}{(x^{2} + d^{2})(x^{2} + d^{2})^{\frac{1}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{x^{2}*-(2x + 0 + 0 + 0)*\frac{1}{2}}{sqrt(x^{2} + d^{2})(x^{2} + h^{2} + 2dh + d^{2})(x^{2} + h^{2} + 2dh + d^{2})^{\frac{1}{2}}} + \frac{d^{2}*-(2x + 0)*\frac{1}{2}}{(x^{2} + d^{2})(x^{2} + d^{2})^{\frac{1}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{d^{2}*-(2x + 0 + 0 + 0)*\frac{1}{2}}{sqrt(x^{2} + d^{2})(x^{2} + h^{2} + 2dh + d^{2})(x^{2} + h^{2} + 2dh + d^{2})^{\frac{1}{2}}} + \frac{dh*-(2x + 0)*\frac{1}{2}}{(x^{2} + d^{2})(x^{2} + d^{2})^{\frac{1}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{dh*-(2x + 0 + 0 + 0)*\frac{1}{2}}{sqrt(x^{2} + d^{2})(x^{2} + h^{2} + 2dh + d^{2})(x^{2} + h^{2} + 2dh + d^{2})^{\frac{1}{2}}}\\=&\frac{2x}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{x^{3}}{(x^{2} + d^{2})^{\frac{3}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{x^{3}}{(x^{2} + h^{2} + 2dh + d^{2})^{\frac{3}{2}}sqrt(x^{2} + d^{2})} - \frac{d^{2}x}{(x^{2} + d^{2})^{\frac{3}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{d^{2}x}{(x^{2} + h^{2} + 2dh + d^{2})^{\frac{3}{2}}sqrt(x^{2} + d^{2})} - \frac{dhx}{(x^{2} + d^{2})^{\frac{3}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{dhx}{(x^{2} + h^{2} + 2dh + d^{2})^{\frac{3}{2}}sqrt(x^{2} + d^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!