There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} + {d}^{2} + hd)}{sqrt({x}^{2} + {d}^{2})sqrt({x}^{2} + {(h + d)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{d^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{dh}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{d^{2}}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{dh}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})}\right)}{dx}\\=&\frac{2x}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{x^{2}*-(2x + 0)*\frac{1}{2}}{(x^{2} + d^{2})(x^{2} + d^{2})^{\frac{1}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{x^{2}*-(2x + 0 + 0 + 0)*\frac{1}{2}}{sqrt(x^{2} + d^{2})(x^{2} + h^{2} + 2dh + d^{2})(x^{2} + h^{2} + 2dh + d^{2})^{\frac{1}{2}}} + \frac{d^{2}*-(2x + 0)*\frac{1}{2}}{(x^{2} + d^{2})(x^{2} + d^{2})^{\frac{1}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{d^{2}*-(2x + 0 + 0 + 0)*\frac{1}{2}}{sqrt(x^{2} + d^{2})(x^{2} + h^{2} + 2dh + d^{2})(x^{2} + h^{2} + 2dh + d^{2})^{\frac{1}{2}}} + \frac{dh*-(2x + 0)*\frac{1}{2}}{(x^{2} + d^{2})(x^{2} + d^{2})^{\frac{1}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} + \frac{dh*-(2x + 0 + 0 + 0)*\frac{1}{2}}{sqrt(x^{2} + d^{2})(x^{2} + h^{2} + 2dh + d^{2})(x^{2} + h^{2} + 2dh + d^{2})^{\frac{1}{2}}}\\=&\frac{2x}{sqrt(x^{2} + d^{2})sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{x^{3}}{(x^{2} + d^{2})^{\frac{3}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{x^{3}}{(x^{2} + h^{2} + 2dh + d^{2})^{\frac{3}{2}}sqrt(x^{2} + d^{2})} - \frac{d^{2}x}{(x^{2} + d^{2})^{\frac{3}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{d^{2}x}{(x^{2} + h^{2} + 2dh + d^{2})^{\frac{3}{2}}sqrt(x^{2} + d^{2})} - \frac{dhx}{(x^{2} + d^{2})^{\frac{3}{2}}sqrt(x^{2} + h^{2} + 2dh + d^{2})} - \frac{dhx}{(x^{2} + h^{2} + 2dh + d^{2})^{\frac{3}{2}}sqrt(x^{2} + d^{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!