本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{1}{sqrt(2pi)})(xe^{\frac{-1}{2}{x}^{2} + 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}} - 3e^{\frac{-1}{2}{x}^{2} + 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}} + 3xe^{\frac{-1}{2}{x}^{2} - 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}} + 9e^{\frac{-1}{2}{x}^{2}} - 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{9e^{\frac{-1}{2}x^{2}}}{sqrt(2pi)} - \frac{3x}{sqrt(2pi)} - \frac{\frac{1}{2}y^{2}}{sqrt(2pi)} - \frac{\frac{9}{2}}{sqrt(2pi)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{9e^{\frac{-1}{2}x^{2}}}{sqrt(2pi)} - \frac{3x}{sqrt(2pi)} - \frac{\frac{1}{2}y^{2}}{sqrt(2pi)} - \frac{\frac{9}{2}}{sqrt(2pi)}\right)}{dx}\\=&\frac{e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}(\frac{-1}{2}*2x + 3 + 0 + 0)}{sqrt(2pi)} + \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}(\frac{-1}{2}*2x + 3 + 0 + 0)}{sqrt(2pi)} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} + \frac{3e^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}(\frac{-1}{2}*2x - 3 + 0 + 0)}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} + \frac{9e^{\frac{-1}{2}x^{2}}*\frac{-1}{2}*2x}{sqrt(2pi)} + \frac{9e^{\frac{-1}{2}x^{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{3}{sqrt(2pi)} - \frac{3x*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{\frac{1}{2}y^{2}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{\frac{9}{2}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}}\\=&\frac{-8e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{x^{2}e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{6xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3e^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{3x^{2}e^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{9xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{9xe^{\frac{-1}{2}x^{2}}}{sqrt(2pi)} - \frac{3}{sqrt(2pi)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!