There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{sqrt(2pi)})(xe^{\frac{-1}{2}{x}^{2} + 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}} - 3e^{\frac{-1}{2}{x}^{2} + 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}} + 3xe^{\frac{-1}{2}{x}^{2} - 3x - \frac{1}{2}{y}^{2} - \frac{9}{2}} + 9e^{\frac{-1}{2}{x}^{2}} - 3x - \frac{1}{2}{y}^{2} - \frac{9}{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{9e^{\frac{-1}{2}x^{2}}}{sqrt(2pi)} - \frac{3x}{sqrt(2pi)} - \frac{\frac{1}{2}y^{2}}{sqrt(2pi)} - \frac{\frac{9}{2}}{sqrt(2pi)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{9e^{\frac{-1}{2}x^{2}}}{sqrt(2pi)} - \frac{3x}{sqrt(2pi)} - \frac{\frac{1}{2}y^{2}}{sqrt(2pi)} - \frac{\frac{9}{2}}{sqrt(2pi)}\right)}{dx}\\=&\frac{e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}(\frac{-1}{2}*2x + 3 + 0 + 0)}{sqrt(2pi)} + \frac{xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}(\frac{-1}{2}*2x + 3 + 0 + 0)}{sqrt(2pi)} - \frac{3e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} + \frac{3e^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}(\frac{-1}{2}*2x - 3 + 0 + 0)}{sqrt(2pi)} + \frac{3xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} + \frac{9e^{\frac{-1}{2}x^{2}}*\frac{-1}{2}*2x}{sqrt(2pi)} + \frac{9e^{\frac{-1}{2}x^{2}}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{3}{sqrt(2pi)} - \frac{3x*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{\frac{1}{2}y^{2}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}} - \frac{\frac{9}{2}*-0*\frac{1}{2}}{(2pi)(2pi)^{\frac{1}{2}}}\\=&\frac{-8e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{x^{2}e^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{6xe^{\frac{-1}{2}x^{2} + 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} + \frac{3e^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{3x^{2}e^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{9xe^{\frac{-1}{2}x^{2} - 3x - \frac{1}{2}y^{2} - \frac{9}{2}}}{sqrt(2pi)} - \frac{9xe^{\frac{-1}{2}x^{2}}}{sqrt(2pi)} - \frac{3}{sqrt(2pi)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!