本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{ln({(1 + x)}^{\frac{1}{2}} - {(1 - x)}^{\frac{1}{2}})}{({(1 + x)}^{\frac{1}{2}} + (1 - x)(\frac{1}{2}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\right)}{dx}\\=&(\frac{-((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) - \frac{1}{2} + 0)}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})^{2}})ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}}) + \frac{((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) - (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}}))}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}\\=&\frac{-ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{2((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})^{2}(x + 1)^{\frac{1}{2}}} + \frac{ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{2((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})^{2}} + \frac{1}{2((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})(x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})} + \frac{1}{2((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})(-x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!