There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ln({(1 + x)}^{\frac{1}{2}} - {(1 - x)}^{\frac{1}{2}})}{({(1 + x)}^{\frac{1}{2}} + (1 - x)(\frac{1}{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\right)}{dx}\\=&(\frac{-((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) - \frac{1}{2} + 0)}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})^{2}})ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}}) + \frac{((\frac{\frac{1}{2}(1 + 0)}{(x + 1)^{\frac{1}{2}}}) - (\frac{\frac{1}{2}(-1 + 0)}{(-x + 1)^{\frac{1}{2}}}))}{((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}\\=&\frac{-ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{2((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})^{2}(x + 1)^{\frac{1}{2}}} + \frac{ln((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})}{2((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})^{2}} + \frac{1}{2((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})(x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})} + \frac{1}{2((x + 1)^{\frac{1}{2}} - (-x + 1)^{\frac{1}{2}})(-x + 1)^{\frac{1}{2}}((x + 1)^{\frac{1}{2}} - \frac{1}{2}x + \frac{1}{2})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!