本次共计算 1 个题目:每一题对 k 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(\frac{1}{(2a)})sqrt(\frac{(bd + m(n + k + t) + ms - 1)}{(mbs(n + k + t))}) 关于 k 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}sqrt(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})}{a}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}sqrt(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})}{a}\right)}{dk}\\=&\frac{\frac{1}{2}((\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})bd + 0 + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})mn + 0 + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})mk + \frac{m}{(bmns + bmsk + bmts)} + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})mt + 0 + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})ms + 0 - (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}}))*\frac{1}{2}}{a(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}}\\=&\frac{-b^{2}dms}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}ns}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}sk}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} + \frac{m}{4(bmns + bmsk + bmts)(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}ts}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}s^{2}}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} + \frac{bms}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!