There are 1 questions in this calculation: for each question, the 1 derivative of k is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{(2a)})sqrt(\frac{(bd + m(n + k + t) + ms - 1)}{(mbs(n + k + t))})\ with\ respect\ to\ k:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{1}{2}sqrt(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})}{a}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{1}{2}sqrt(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})}{a}\right)}{dk}\\=&\frac{\frac{1}{2}((\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})bd + 0 + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})mn + 0 + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})mk + \frac{m}{(bmns + bmsk + bmts)} + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})mt + 0 + (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}})ms + 0 - (\frac{-(0 + bms + 0)}{(bmns + bmsk + bmts)^{2}}))*\frac{1}{2}}{a(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}}\\=&\frac{-b^{2}dms}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}ns}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}sk}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} + \frac{m}{4(bmns + bmsk + bmts)(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}ts}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} - \frac{bm^{2}s^{2}}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a} + \frac{bms}{4(bmns + bmsk + bmts)^{2}(\frac{bd}{(bmns + bmsk + bmts)} + \frac{mn}{(bmns + bmsk + bmts)} + \frac{mk}{(bmns + bmsk + bmts)} + \frac{mt}{(bmns + bmsk + bmts)} + \frac{ms}{(bmns + bmsk + bmts)} - \frac{1}{(bmns + bmsk + bmts)})^{\frac{1}{2}}a}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!