本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{4sqrt(\frac{25{x}^{2}}{9} - 1)}{(sqrt(1 - \frac{16{x}^{2}}{9}) + 1)} + \frac{3}{(4x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4sqrt(\frac{25}{9}x^{2} - 1)}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)} + \frac{\frac{3}{4}}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{4sqrt(\frac{25}{9}x^{2} - 1)}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)} + \frac{\frac{3}{4}}{x}\right)}{dx}\\=&4(\frac{-(\frac{(\frac{-16}{9}*2x + 0)*\frac{1}{2}}{(\frac{-16}{9}x^{2} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)^{2}})sqrt(\frac{25}{9}x^{2} - 1) + \frac{4(\frac{25}{9}*2x + 0)*\frac{1}{2}}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)(\frac{25}{9}x^{2} - 1)^{\frac{1}{2}}} + \frac{\frac{3}{4}*-1}{x^{2}}\\=&\frac{64xsqrt(\frac{25}{9}x^{2} - 1)}{9(sqrt(\frac{-16}{9}x^{2} + 1) + 1)^{2}(\frac{-16}{9}x^{2} + 1)^{\frac{1}{2}}} + \frac{100x}{9(sqrt(\frac{-16}{9}x^{2} + 1) + 1)(\frac{25}{9}x^{2} - 1)^{\frac{1}{2}}} - \frac{3}{4x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!