There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{4sqrt(\frac{25{x}^{2}}{9} - 1)}{(sqrt(1 - \frac{16{x}^{2}}{9}) + 1)} + \frac{3}{(4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4sqrt(\frac{25}{9}x^{2} - 1)}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)} + \frac{\frac{3}{4}}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4sqrt(\frac{25}{9}x^{2} - 1)}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)} + \frac{\frac{3}{4}}{x}\right)}{dx}\\=&4(\frac{-(\frac{(\frac{-16}{9}*2x + 0)*\frac{1}{2}}{(\frac{-16}{9}x^{2} + 1)^{\frac{1}{2}}} + 0)}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)^{2}})sqrt(\frac{25}{9}x^{2} - 1) + \frac{4(\frac{25}{9}*2x + 0)*\frac{1}{2}}{(sqrt(\frac{-16}{9}x^{2} + 1) + 1)(\frac{25}{9}x^{2} - 1)^{\frac{1}{2}}} + \frac{\frac{3}{4}*-1}{x^{2}}\\=&\frac{64xsqrt(\frac{25}{9}x^{2} - 1)}{9(sqrt(\frac{-16}{9}x^{2} + 1) + 1)^{2}(\frac{-16}{9}x^{2} + 1)^{\frac{1}{2}}} + \frac{100x}{9(sqrt(\frac{-16}{9}x^{2} + 1) + 1)(\frac{25}{9}x^{2} - 1)^{\frac{1}{2}}} - \frac{3}{4x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!