本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{36}{5}sin(\frac{6x}{5})sin(x) - 6cos(x)cos(\frac{6x}{5}) + sqrt(3500)cos(x) + 6cos(x) - 10sin(x) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{36}{5}sin(\frac{6}{5}x)sin(x) - 6cos(x)cos(\frac{6}{5}x) + cos(x)sqrt(3500) + 6cos(x) - 10sin(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{36}{5}sin(\frac{6}{5}x)sin(x) - 6cos(x)cos(\frac{6}{5}x) + cos(x)sqrt(3500) + 6cos(x) - 10sin(x)\right)}{dx}\\=&\frac{36}{5}cos(\frac{6}{5}x)*\frac{6}{5}sin(x) + \frac{36}{5}sin(\frac{6}{5}x)cos(x) - 6*-sin(x)cos(\frac{6}{5}x) - 6cos(x)*-sin(\frac{6}{5}x)*\frac{6}{5} + -sin(x)sqrt(3500) + cos(x)*0*\frac{1}{2}*3500^{\frac{1}{2}} + 6*-sin(x) - 10cos(x)\\=&\frac{366sin(x)cos(\frac{6}{5}x)}{25} + \frac{72sin(\frac{6}{5}x)cos(x)}{5} - sin(x)sqrt(3500) - 6sin(x) - 10cos(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!