There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{36}{5}sin(\frac{6x}{5})sin(x) - 6cos(x)cos(\frac{6x}{5}) + sqrt(3500)cos(x) + 6cos(x) - 10sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{36}{5}sin(\frac{6}{5}x)sin(x) - 6cos(x)cos(\frac{6}{5}x) + cos(x)sqrt(3500) + 6cos(x) - 10sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{36}{5}sin(\frac{6}{5}x)sin(x) - 6cos(x)cos(\frac{6}{5}x) + cos(x)sqrt(3500) + 6cos(x) - 10sin(x)\right)}{dx}\\=&\frac{36}{5}cos(\frac{6}{5}x)*\frac{6}{5}sin(x) + \frac{36}{5}sin(\frac{6}{5}x)cos(x) - 6*-sin(x)cos(\frac{6}{5}x) - 6cos(x)*-sin(\frac{6}{5}x)*\frac{6}{5} + -sin(x)sqrt(3500) + cos(x)*0*\frac{1}{2}*3500^{\frac{1}{2}} + 6*-sin(x) - 10cos(x)\\=&\frac{366sin(x)cos(\frac{6}{5}x)}{25} + \frac{72sin(\frac{6}{5}x)cos(x)}{5} - sin(x)sqrt(3500) - 6sin(x) - 10cos(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!