本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数k(sin(\frac{1}{2})xcos(\frac{1}{2}){x}^{2} + fcos(\frac{1}{2}){x}^{3}) + k*2(cos(\frac{1}{2})x(1 - 3sin(\frac{1}{2}){x}^{2}) - 3fsin(\frac{1}{2})xcos(\frac{1}{2}){x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -5kx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) + kfx^{3}cos(\frac{1}{2}) + 2kxcos(\frac{1}{2}) - 6kfx^{3}sin(\frac{1}{2})cos(\frac{1}{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -5kx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) + kfx^{3}cos(\frac{1}{2}) + 2kxcos(\frac{1}{2}) - 6kfx^{3}sin(\frac{1}{2})cos(\frac{1}{2})\right)}{dx}\\=&-5k*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 5kx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) - 5kx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0 + kf*3x^{2}cos(\frac{1}{2}) + kfx^{3}*-sin(\frac{1}{2})*0 + 2kcos(\frac{1}{2}) + 2kx*-sin(\frac{1}{2})*0 - 6kf*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 6kfx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) - 6kfx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0\\=&-15kx^{2}sin(\frac{1}{2})cos(\frac{1}{2}) + 2kcos(\frac{1}{2}) - 18kfx^{2}sin(\frac{1}{2})cos(\frac{1}{2}) + 3kfx^{2}cos(\frac{1}{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!