There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ k(sin(\frac{1}{2})xcos(\frac{1}{2}){x}^{2} + fcos(\frac{1}{2}){x}^{3}) + k*2(cos(\frac{1}{2})x(1 - 3sin(\frac{1}{2}){x}^{2}) - 3fsin(\frac{1}{2})xcos(\frac{1}{2}){x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -5kx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) + kfx^{3}cos(\frac{1}{2}) + 2kxcos(\frac{1}{2}) - 6kfx^{3}sin(\frac{1}{2})cos(\frac{1}{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -5kx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) + kfx^{3}cos(\frac{1}{2}) + 2kxcos(\frac{1}{2}) - 6kfx^{3}sin(\frac{1}{2})cos(\frac{1}{2})\right)}{dx}\\=&-5k*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 5kx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) - 5kx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0 + kf*3x^{2}cos(\frac{1}{2}) + kfx^{3}*-sin(\frac{1}{2})*0 + 2kcos(\frac{1}{2}) + 2kx*-sin(\frac{1}{2})*0 - 6kf*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 6kfx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) - 6kfx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0\\=&-15kx^{2}sin(\frac{1}{2})cos(\frac{1}{2}) + 2kcos(\frac{1}{2}) - 18kfx^{2}sin(\frac{1}{2})cos(\frac{1}{2}) + 3kfx^{2}cos(\frac{1}{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!