本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({e}^{x})({sin(x)}^{2}) - (\frac{2}{5})({e}^{x})(sin(2x)) + (\frac{4}{5})({e}^{x})(cos(2x)) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{x}sin^{2}(x) - \frac{2}{5}{e}^{x}sin(2x) + \frac{4}{5}{e}^{x}cos(2x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{x}sin^{2}(x) - \frac{2}{5}{e}^{x}sin(2x) + \frac{4}{5}{e}^{x}cos(2x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x) + {e}^{x}*2sin(x)cos(x) - \frac{2}{5}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2x) - \frac{2}{5}{e}^{x}cos(2x)*2 + \frac{4}{5}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(2x) + \frac{4}{5}{e}^{x}*-sin(2x)*2\\=&2{e}^{x}sin(x)cos(x) + {e}^{x}sin^{2}(x) - 2{e}^{x}sin(2x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!