There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({e}^{x})({sin(x)}^{2}) - (\frac{2}{5})({e}^{x})(sin(2x)) + (\frac{4}{5})({e}^{x})(cos(2x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x}sin^{2}(x) - \frac{2}{5}{e}^{x}sin(2x) + \frac{4}{5}{e}^{x}cos(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x}sin^{2}(x) - \frac{2}{5}{e}^{x}sin(2x) + \frac{4}{5}{e}^{x}cos(2x)\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin^{2}(x) + {e}^{x}*2sin(x)cos(x) - \frac{2}{5}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2x) - \frac{2}{5}{e}^{x}cos(2x)*2 + \frac{4}{5}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(2x) + \frac{4}{5}{e}^{x}*-sin(2x)*2\\=&2{e}^{x}sin(x)cos(x) + {e}^{x}sin^{2}(x) - 2{e}^{x}sin(2x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!