本次共计算 1 个题目:每一题对 t 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-{v}^{4}{t}^{2}{\frac{1}{({v}^{2}{t}^{2} + {a}^{2})}}^{(\frac{3}{2})} + {v}^{2}{\frac{1}{({v}^{2}{t}^{2} + {a}^{2})}}^{\frac{1}{2}} 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-v^{4}t^{2}}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}} + \frac{v^{2}}{(v^{2}t^{2} + a^{2})^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-v^{4}t^{2}}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}} + \frac{v^{2}}{(v^{2}t^{2} + a^{2})^{\frac{1}{2}}}\right)}{dt}\\=&-(\frac{\frac{-3}{2}(v^{2}*2t + 0)}{(v^{2}t^{2} + a^{2})^{\frac{5}{2}}})v^{4}t^{2} - \frac{v^{4}*2t}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}} + (\frac{\frac{-1}{2}(v^{2}*2t + 0)}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}})v^{2} + 0\\=&\frac{3v^{6}t^{3}}{(v^{2}t^{2} + a^{2})^{\frac{5}{2}}} - \frac{3v^{4}t}{(v^{2}t^{2} + a^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!